47 research outputs found

    A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A

    Get PDF
    The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    FUNN-MG: A Metagenomic Systems Biology Computational Framework

    No full text

    Towards an Ensemble Learning Strategy for Metagenomic Gene Prediction

    No full text

    Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal

    No full text
    Most filamentous bacteria in biological nutrient removal (BNR) processes have not been identified beyond their morphotype and simple staining reactions. Furthermore, the majority of sludge filaments observed under the microscope do not hybridize to commonly used phylogenetic probes for well characterized bacterial phyla such as the Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. Specific 16S rRNA-targeted oligonucleoticle probes were designed for the phylum Chloroflexi (green non-sulfur bacteria) and optimized for use in fluorescence in situ hybridization. Chloroftexi have been implicated in BNR systems by phylogenetic identification of filamentous bacteria isolated by micromanipulation from sludge and culture-independent molecular phylogenetic surveys. The predominant morphotype responding to the probes was filamentous and these filaments were generally abundant in 10 Australian full-scale and two laboratory-scale BNR samples examined. Filamentous bacteria responding to a subdivision 1 Chloroflexi probe were rare in the samples, whereas subdivision 3 Chloroflexi filaments were very common in some sludges. This is in direct contrast to results obtained from molecular phylogenetic surveys of BNR systems where most sludge 16S rDNA clones belong to subdivision 1 and only a few to subdivision 3. It is suggested that filamentous bacteria belonging to the Chloroflexi phylum account for a large fraction of phylogenetically uncharacterized filaments in BNR systems and are likely to be abundant in such systems on a global scale

    Metagenomic and metaproteomic analyses of Accumulibacter phosphatis-enriched floccular and granular biofilm

    No full text
    Biofilms are ubiquitous in nature, forming diverse adherent microbial communities that perform a plethora of functions. Here we operated two laboratory-scale sequencing batch reactors enriched with Candidatus Accumulibacter phosphatis (Accumulibacter) performing enhanced biological phosphorus removal. Reactors formed two distinct biofilms, one floccular biofilm, consisting of small, loose, microbial aggregates, and one granular biofilm, forming larger, dense, spherical aggregates. Using metagenomic and metaproteomic methods, we investigated the proteomic differences between these two biofilm communities, identifying a total of 2022 unique proteins. To understand biofilm differences, we compared protein abundances that were statistically enriched in both biofilm states. Floccular biofilms were enriched with pathogenic secretion systems suggesting a highly competitive microbial community. Comparatively, granular biofilms revealed a high-stress environment with evidence of nutrient starvation, phage predation pressure, and increased extracellular polymeric substance and cell lysis. Granular biofilms were enriched in outer membrane transport proteins to scavenge the extracellular milieu for amino acids and other metabolites, likely released through cell lysis, to supplement metabolic pathways. This study provides the first detailed proteomic comparison between Accumulibacter-enriched floccular and granular biofilm communities, proposes a conceptual model for the granule biofilm, and offers novel insights into granule biofilm formation and stability
    corecore